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ABSTRACT

10 Exact solutions are found to the linearized three dimensional equations

IF for free surface gravity waves trapped against a straight coastline with a

variable (perpendicular to the coastline) topography. Three families of

topographies are found, one concave upwards and two convex upwards, which will

support these edge waves as separable solutions to the original equations.

For a given topography, specified by an initial slope, ho, a typical water
0

depth, hM , and a typical offshore distance, xM , solutions/are given in terms of

the nondimensional parameters, h' and, K. X/h;an h': )The first parameter isa

measure of how the initial slope h, compares to t for a straight

topography from the origin to (xM,hM), i.e /) This parameter characterizes

the families in ranges 0 < h' xN < 1/2, 1/2 < hxM/hM <  and

1 0ho Nx/h (th 10)/0.9. (This latter constant bound is a function of the

.deifinition of offshore scale and can be modified to other values.)

'-,--he nondimensional frequency, period, vertical wave number, offshore decay ratef
and topography can be expressed in terms cf the single parameter h' xk/h1

the velocities, wave height and alongshore wave number depend on both parameters.

T cmtin ha be. cr; _,.
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INTRODUCTION

The trapping of wave energy along coastlines has been of theoretical

interect since the original edge wave solution of Stokes (1846).

Recently, there has been consideration of t.e physical reality of such trapped

waves and a number of observations have led to a belief that such trapped waves

may indeed play a role in beach erosion, local resonances, anisostatic response

to traveling pressure disturbances, etc.; a review of these peints is contained

in LeBlond and Mysak (1977) and (1978). Some distinction must be made at the

outset of any research as to the type of trapped waves to be discussed.

Here the emphasis is on class I waves, i.e. gravity dominated, of frequencies

high enough that Coriolis effects may be neglected, i.e. edge waves.

These waves are basically high frequency, dispersive and can travel in either

direction along a coastline; in fact, since no rotational effects are included

and thus no direction is preferred, the coast line may be oriented in any

. : direct ion.

"The problem at hand then is to examine the existence of edge waves

traveling along and trapped against a straight coastline bounding a semi-infinite

ocean whose depth contours are parallel to the coastline. The ocean is

considered to be a perfect homogeneous fluid, inviscid and irrotational.

The purpose of the paper is to establish exact solutions for these three

dimensional equations by reversing the usual question "what are the trapped

solutions for a given topography" to read "what topographies will support trapped

wave solutions". One solution already available for comparison is that of

Stokes (1846) who considered a linear topography (constant slope) &d obtained a

zeroth" mode solution which Urseli (1952) extended to a number of discrete modes
plus a continuous spectrum. This was based on the previous work of Eckart (1951)

who obtained higher modes using a shallow water (2D) approximation.

S,| I |'-' I t
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Other authors [e.g. Reid (1958)] added Coriolis effects to the shallow water

theory. In fact, the bulk of the effort in this area has relied on the shallow

water assumption (e.g. see p. 460 LeBlond and Mysak (1977)] and the lack of

other exact three dimensional edge wave solutions was comented upon by V

Grimshaw (1974) who examined upper and lower bounds on such dispersion relation-

ships. Some non-linear topographies have been considered. Robinson (1964)

examined class II, i.e. quasi-geostrophic low frequency, waves on a linear

sloping shelf of finite width terminated by a discontinuous drop to a constant

depth infinite ocean. Ball (1966) used an exponential depth profile with

solutions in the form of hypergeoetric or Jacobi polynomials to examine both

edge and continental shelf waves, i.e. both class I and class II waves.

Mysak (1968) also discussed both classes, using Robinson's depth profile, where

the solution is given in terms of Laguerre polynomials. Hidaka (1976-a)

examined seiching due to a submarine bank described by a parabolic depth

variation in terms of Mathieu functions. This is a trapped but not specifically

an "edge" wave, but it is of class I nevertheless. In a related paper

(Hidaka (1976-b)) he examined shelf resonances when the apex of the parabola

reaches the free surface. Murty (1977) gives a general review of tsunami

theory and current research, which includes theoretical and observational

studies on edge waves caused by tsunamis (which are generally of high enough

frequency that Coriolis effects may be neglected, i.e. class I waves) but are

long enough that a two dimensional shallow water theory suffices.

Experiments performed by Ursell (1952) indicated the reality of such edge

waves; further experiments by Galvin (1965) indicated that these could be

excited (nonlinearly) by normally incident waves. Huntley and Bowen (1973) and

Huntley (1976) have made observations which indicate the presence of edge waves

A.
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along coastlines in the U.K. while Nakamuri (1962), Hatori and Takahasi (1964),

Nakamura h.nd Watanabe (1966), Aida (1967), Hatori (1967) and others have

described the excitation of such edge waves by tsunamis incident onto the coast

of Japan. There is other observational evidence, Wilson and Torum (1968), that

some tsunami energy is trapped on the continental shelf in the generating region

at least for the 1964 Alaskan Earthquake and it may be expected that some of

this energy could be converted to and travel along the coastline as edge waves.

Olsen and Hwang (1974) indicate that edge waves may play a significant role in

near shore tsunami behavior.
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The governing equations are well known, e.g. Lamb (1932) and are writ.en

here for a straight coastline, x - 0, - y < y < 4-, bounding a semi-infinite

ocean, x > 0 with a free surface at z 0 and a bottom topography, z - -h(x)

with z positive upward:

(1) V2,(x,y,z,t) 0 0; x > 0, -h < z < 0, -® < y <

(2) 2 -g /az - O; x > O, z - O, y <

(3) al/az - -(dh/dx) af/ax; x > 0, z = -h, -< y <0

where a time harmonic behavior, exp(-iot) has been assumed for the velocity

potential, 4. The Coriolis effect has been neglected and the y dependence will

be taken as periodic (the edge wave assumption). Assuming separation of

variables, the velocity potential is given as * X(x) Z(z) cos (ky-at), using

a real form for the y and t dependence, leading to:

(4) X(x) - A exp (-Lx) + B exp (+Lx)

(5a) Z(z) a C sinh (nz) + D cosh (nz)

(3b) - C' sin (mz) + D' cos (mz)

where 12 is a separation constant and n2  k k2  t2 > 0 and m2 - £2 - k2 > 0

provide two different solution forms for Z(z). The coefficient B is taken to

be zero to provide a "trapped" solution and A may be absorbed into Z(z).

Substituting .the first solution, (5a), into the boundary conditions provides

(6) C/D- n

(7) dh/dx -(W/O [tanh (nh) - (72/in]
[I - (o4/gn)tanh(nh)]

(a) - -(n/l)tanh[nh-tanh (a2/gn)]; o2 / n < 1

(b) -(n/t)coth[nh - coth-1(02/gn)]; a2/gn > 1
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Using the boundary conditions in (5b) leads to

(8) C'/D' a gm

(9) dh/dx - (m/t)tanfmh + tan- (ol/gm)]

Equations (7) and (9) can be integrated to give three families of topographies

that give trapped solutions as summarized below:

Case 1: k2 > 12; 02/gn < 1

Case II: k2 > X2; o2/gn > 1

Case III: k2 < 12; all o2/gm

II
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SPECIFIC SOLUTIONS

Case I leads to a concave upward topography with h(O) set equal to zero

(to prevet flux across the coastline), an asymptotic constant depth,

h. [tanh-l(o2/gn)]/n and an initial slope, h' (dh/dx) 0 o2/gL.

Using 0 a tanh- (02/gn),

h(x) - (0 - sinh (sinh 0 * exp(-n 2x/Z])]/n

with a velocity potential given as

0 - D exp (-Lx) cos (ky-ot)cosh(n(z+h)]/cosh(nh)

Case II (k2 > 12, o2 /gn > 1, i.e. eq. 7b) leads to a convex upward topography with

an infinite slope at a finite value of h and x. Using 0' coth- (o2/gn),

h(x) - (0'-cosh (cosh 0'.exp(-n2x/D]) /n

The maximum extent of the topography is x. - (Z/n2)kn~cosh 0'"1 which occurs at

h, VA/. The velocitv potential in this case is, for x <

D D exp(-Lx)cos(ic-ot)sinh[n(z+hM)1/sinh(nhM)

When o2/gn - 1, both cases I and 11 recover the Stokes solution, with

h - x tan a, t - -k cos a, n - -k sin a and a - tan (h). ,
0

Case III (k2 < L2 all o2/gm; i.e. eq. 9) using y - tan-  leads again
g ed

again to a convex upward topography with an infinite slope at xm - -(/ 2)knH siny]

with depth h - (1/2 - y)/m

h(x) - [sin- (sin y " expj+m2x/L])-Y]/m

with a velocity potential for x < xM iven by

D - D' exp(-Lx)cos(ky-ot)sn[r(hM+Z)]/sin(hm)

These last two families of solutions both appear to be physically

unrealistic in that the prescribed bottom topography does not extend past a finite

distance and finite depth before "doubling back." If, however, the resulting

velocity fields for these problems have decayed sufficiently with distance from

the straight coastline through the term exp(-Ax) and/or if they have decayed
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sufficiently with depth to have both u and w negligible at the lower boundary

before these "turning points" are reached, the point is moot since the lower

boundary condition, eq. (3), is essentially satisfied identically for all x and

z past these turning points. Thus these solutions may provide a basis for

realistic trapped waves on a topography which matches that prescribed by these

solutions prior to the turning points and a flat (or any other) topography past

~them.

i The rest of this report will examine the implications of these solutions,

particularly for the various limiting cases, To do so conveniently, it is useful

to nondimensionalize the parameters and variables used. The coordinates x, y

and z are nondimansionalized wih respect to hM(h. hM for case I) as are the

parameters k, 2 and n (m will be counted with n ginericilly),

i.e. (Ey,!) - (x,y~z)/h rnd (k,,n) - (k,k,n) (O) as the case requires.

1/2
The frequency is scaled to a (g/h) as is the time, i.e. U -O/ and

:' - t a %. Velocities, 9 - 9€, are scaled by u 0 u(xmO, y-O, z-0, t-O) and

the wav. height, E - -(l/g) z Ojby o & (x-0, y=,/2k, z-0, t-O) which

equals (0/gt)u o.0

V



SOLUTIONS AIM) LIMITING CASES

The above solutions are defined by three dimensional parameters or two

nondimensional parameters, using hM as a typical length scale. The choice of

those parameters to be prescribed is important since it establishes how simply the

results may be described. One such nondimensional "fundamental" parameter will

be chosen as the initial slope, h'. The second choice depends on which aspect
0

of the problem is under study. For examination of various "asymptotic solutions,"

the parameter a2/n (or 0, 0' or y ) arises naturally in the derivation and will

therefore be used for these cases. The remaining computations for the general

solutions however will be carried out using ht as the second fundamental"

parameter. For case i, N is defined as h(x - .9 x) .o h.; actually other

choices could equally well be made to define a typical offshore lezgth, e.g.

h(x, - (lOxm) a(1-6)hi Then / is x/hM and the parameter h;!m is the

ratio of the actual initial slope to the slope of a straight line fro the origin

to (xmhm). This parameter characterizes the three families as well as did

Case I requires 1 < h;o R < (Ln 10)/9 (or more generally, (In 1/6)/(1-5))

which is a curve whose initial slope hl is greater than hM/xM giving a curve
0 V

lying below the straight line from the origin to (.9 xM, .9 h.) for f < xM,

i.e. is concave upwards. Case II and case III require 0.5 < h' a 1 and

0 < h', < 0.5 respectively; these both give topographies lying above (closer

to the surface) that the straight line to (xhM), i.e. are concave downwards.

Thus the t~cee families can be represented by a continuous range of values

of h' with some question as to the cross over values of 1.0 (which

corresponds to the Stokes solution) and 0.5 (which presents no actual I
difficulty). The main advantage to use of this parameter is that the frequency,

A4
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I, the vertical "wavenumber," the (modified) offshore decay rate, i, ;

and the topography, 1i(;/x1 ) can be represented as functions of ho km ilone;

i.e. they are one parameter functions. The along-shore vavenumber, k, the

wave height, Z, and the velocities, U, , V, depend ofi both h; ' and

h;, i.e. are two parameter functions. Thus mucho o the solution cah be expressed

quite simply in terms of a single parameter.

-1
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* - CASE 1:

This is in many ways the most satisfying solution with a well behaved

topography. Consider lI, h' and - (i/.9)x(h - .9h) to be specified.

In non-dimensional terms, R is given by h' and since E. in 1 by definition:~0

tanhf 11 rsinh 1n Lsinh 9; " h1

with 3, andk given by

~1/2
- [t tanh f]/

-[ tanh 6]i/hbo0

." I + (tanh2ho2] 0

If 52/R were specified instead of ho R, 6 would be simply

tanh'l(52/5), eliminating the need to solve a transcendental equation for R.

The topography is given by

)- 1- 1 (ll/sinh- [sinh f l exP(-nftlR/))

and the velocities 4nd wave height oy

G exp(-'t)cos(i7 - 3Z)cosh(6(1+zi)j/cosh B

7 (i/)exp(-L!)sin(k3 - UE)cosh((l + i)]/cosh R

;1,- -(iR/!)exp(-.R)cos(kY - 6)ainh((l + i)]/cosh E

n exp(-15-)sin(K- -5i

Note that, as 1 approaches zero, ho RM approaches 1 while as 5 approaches

if tinit,;' h! i %ormhei (In 10)/.9. Furthermore, i and 3 depend only on

the combination h" while a, k, h and the velocities require separate

values for h' and i. However, 1/i m  and h(if%) depend only on h' Z."0 0

A 
°



A: Consider the limiting case 52f E << 1. Approximation@ for the governing

parameters are found to be

L ~C 2 /h'
0

0 .C

V ~C(l + (clht)2F'

h;R !: (1/. 9) [ tn 10 - c2((In 10)/3 l / )

The restriction on 52/fi implies a << o , i.e. that a shallow water wave

theory be used leading to the same topography for all applicable frequencies*

The topogrnphy is given by

0

which in turn is the same as that used by Ball (1967). Within the limitations of

this case, the velocity potential isA

D 1 e~p(-K 2X/hoIcos(( + (4/h)' 2

with K B . This corresponds to Ball's solution for the case of zero rotation

and mode number (ni) *0, i.e. the first term in hit hypergeometric polynomial

which then reduces to a simple exponential decay in i. The corresponding

velocity field has no vertical viariatbon, an exponential decay with distance

perpendicular to the 'ahore line and a periodica wave behavior *1'~ng 'the shore

4> line, both of which depetnd on the nondimehsional frequetwcy and the initial

beach slope. Since this form has already bo*n 6bitined by *Ai in ir" g~tr

generality, it will not be discuss~d further here.-
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B: Consider next the case when ;2/i is near 1, i.e. U2/;i-_ 1-c; c << 1.
Then A 0 Atn(2/B) is a large number. The reining parameters follow as

[-n(2/c) Jn2

z (1/2 ho)Zn(2/c )

• -(l/2)Ln(2/c)[1 + (1/ho0 1 / 2

and

ho 1 lIn(1 (c/2)')/(.45 tn(2/c))

i.e. h is slightly larger than 1,

The topography is given by

( ' -) /2]Ri(R) 1 - (l/2Ln(2/c)) 'sinh L(c/2)

For hl << 1, this reduces to a linear topography, * h'l.
00

Since h o 7 is close to L, this implieis that R << for this linear

topography. For these small values of R, the velocities and wave height are

ii - (2/c)l/2(-/h) cosjY
•(l/2n(2/c)(1+(1/ho)2)1 2 - (l/2Ln(2/c))1 /2 rE, (1+ h'2) (2/)c) sin [ ]

0V .ht(2/)l/ 2 (i - /h0) cos [ ]
0

-i/2h' ,'k :(2/c) sin "

Thi3 solution recovers the classical Stokes' solution, but only, for large

Ri and V. However, if the general solution is examined, the complete Stokes'

solution (for all 0) iL obtained for ZI/K exactly equal to 1.0. This limiting
process for case I can only provide the high frequency Stokesa1olution since the

regular Stokes' solution is actually neither in class I nor in class II but on

their boundary. Since 2 < 0, these velocities di'- out rapidly with increasing

depth and distance offshore.

.71'
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CASE II:

e This, together with case 11, compose the solutions for h'ou<:1

i.e. the concave do-wnward topographies; fi is related to hSe M through

h' coth R, •Wncosh H)

with

S(h coth 1)/2

S(R i coth )/h°

= ~l + (coth2fi)/ho2]"/2
0

and

h) I - (l/5)cosh- (cosh F * exp(-ft2fIt)]

The velocities are then given by

*exp(-I%)cos(R7 - 5Z)sinh(l( + 1)]/uinh F~

= (k/!)exp(-ZZ)sin(R - 5Z)sinh([(l + i)]/inh i-

" -(i/I)exp(-!i)cos(r - Ea)coshfi(l + i)]/sinh

and the wave height by

As approaches zero, hot approaches 1/2 while as R approaches

infinity, h 5M approaches 1 from below. Again, R, i/, h(i/j) and n

depend only on the single parameter h' "
0

Limiting values of 52/R may again be examined.

A: Consider the limiting case 1 1+ e where c << 1. Here, 1 -tl/2ln(2/c)

again and h) with
0 oM I- tn(2/c-- wth
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5 -_~/1C/)1 1/2

" =(n(21c))12h o
; 0 o 1/ 2

S. (l/2h)tn(2/c)(1 ho')

iand, for rch, < I (as it must be for SE < 5y
Y0

(R) hot

' il E (21)(I Rlho)/2 os'(l n1). +(h)2)I2 (1/2 kn(21c)) 1 2 1

jj (2/coZ2(/) ( -sl/h )/2 1n20[ +(/;
114]

I (11+2h1) (2/0 (1in[/

0

;j. -h"(2/ c)Cos[
0

R2ho i'
,(2/)- si

F or smal R, , the Stokes solution for large a is found againt as would be

:expected. In fact, this solution is identical to I-B except for h°l R which is

- greater titan I for I-B and less than I here for non-zero c.

3it
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B: Next consider the limiting case 52/- 1/c where c << 1. Here, n is

approximately c + (1/3)c3 , h; 1/2 + e2/12 and

. --,1 + C2/6

L. (1/ho)(l + c2/3)

)(C2 + (1/h)2]1/2(l 2/3)4

and

ix) I - (1 - 1h' /2

0

which for small h' X is linear again with slope ho. The velocity field and

wave height are given by

1. (l + E)exp(-5/ho)CoS(y-(C
2 + (1/ho)2)1/2

00

(1 + (c ho')2]12(1 + I)exp(-!/ho)sin[ " ]
0 0

- h'.exp(-R/h)cos[ " ]

0

Note that, to the lowest order in c, h' R, a and are essentially

independent of c, as are k, i, and w if h' << 1 as well.

The topography is parabolic, with a maximum horizontal extent of 1/2 h' as

expected. The horizontal velocities decrease linearly with depth, but do not

vanish at the bottom until h equals NO i.e. i can reach -1.

The vertical velocity is constant with depth and is O(h_') compared to the

horizontal velocities; this is then a small value unless ; 'is itself 6f'

order 0(l), i.e. the initial slope is 45" or greater which is physically

unlikely.

- ~ -~ ----- ------
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CASE III: (i2 < 2)

Here the range of h; XM is from 0, as ii approaches w/2 to 1/2, as II
, approaches zero with the general relation

cot i.*Ln(cos 5)

with
( cot -1~/2

m)m(E cot

:- rcot 2  ,1/2

and

sin-sin y'exp(4i 29/!)] -X

with

y m-f + r/2 and

Sexp(-!R).cos(iPy - Ui).sin[ (l + i)lsin ii

,- (R l)exp(-1R)sin(iy7 - 5i)sin[ri(t + i)/sin i

- -(i/Z)exp(-!R)cos(K - 5i)cos[i(L + i)]/sin

*exp(-!)sin(j, -t

A: The first limiting case here is U2/2 = c << 1. Then y c and

,, 2c Ln cm: v /2 - c with h'o RM ; !!

) : . ' ( €/ 2 1 / 2

i . c -.v/2 h'
0

k %(w/2)[(c/h;) 2 -I]

Vji f:

. ..I -
-  

- - - . . . . . . . . . - ' . . .• -

,,F,
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E 17 ,

and

h(F) w 2/7,[sin-l(exp[- T(ir - F)ho/2) - c]

Clearly c > h' in order to have real k, i.e. a progressive wave solution.
0

If is small enough such that exp(iih'/2c) I + wlh'/2c the linear topography

solution is sound again, i.e.

h Z-h' x
0

The velocities and wave height are

U exp(-ci/2ho).cos[Y.,i12.((cho)2 
- 1)1/2 - (wc/2) 1 / 2 ilsin[r/2(1 + 1)]

: 1 - (ho/c)2]1/ 2 .exp(-crt/2ho)sin[ o ]sinfw/2(1 + W
0a

w .- -(ho'/C)exp(-cri/2h o )cosf of ]cos [w/2(l + )]

: exp(-c%/2ho)sinf " ]

Such a solution requires extremely small values of the initial slope, h'.

This In turn leads to a rapid decay of wave heights and velocities in the offshore

direction due to the expf-crR/2ho], e.g. for £ equal to h; (such that k is

zero corresponding to no alongshore variation), the velocities have decayed to 4%

of thier shoreline values when x has reached 2 hM. The wave periods are very

long, which could catuse Coriolis effects to become significant and thu.s

invalidate this solution.

B: The final limiting case, 2/M 1/c, c << 1 implits y ; w/2-c, i *c and

h; 1/2 with i = 1, . - (1/h'), A (l-(ch)2)l/ 2 /h ° and
0 0 0

iiti) (/2 which reduces to the linear form when h' is amall.
0 0

The velocities and wave height in this case are

- --. 5- - --- ~ -- "-' 4
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a (3., + 2)exp(-R/h')cos(YU (ch 2)/ 2A!~t
0

g (I - (ch')) / + exp(-Vh')si " ] 1
0 0

0

which ntch the lAniting case II-B as they must since both of these correspond,

to the case h; In - 1/2 which is common to both case II and case III.

Apart from the alongshore velocity, V, and the corresponding alongshore dependence

on k, this solution is independent of c. Furthermore, as c passes through

zero, the match between case II-S and case III-B is complete, i.e. the transition

from case II to case III is smooth.

'A

4 14
[,'1
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DISCUSSION OF GENERAL SOLUTION

Although the problem is completely specified by three dimensional.

(eg ', xM and hM) or two nondimensional (e.g. h'o and SH), it is of

practical interest to express results in terms of as few parameters as

possible. This may be done for a portion of the present problem.

The quantities A, 5, !/S are functions only of the single parameter

(h°  and the topography h is a function of the parameter ho R and

the spatial variable i/R. Thus although the computer program, given as

appendix A, uses three dimensional inputs, ho, h and xM, the results may

be stated in a fairly compact form.

The vertical "wavenumber," A, is related to the single parameter
Sby o~ 1  F() where F(5) has different forms for the three cases

considered and is plotted in Figure (1). Thus i may be read from this

figure for any value of h' RM between 0 and (Ln 10)10.9

(or calculated through the program). Figure (2) provides the (nondimensional)

period, T, as a function of the single parameter, h' St. Since theInondimensionalization involves h., dimensional periods require knowledge of

both h and h' %. At ho i equal to 1, there is an anomaly in the

original solution. At this value, equation (7) reduces to dbjdx equal to

a constant (-n/t) and h is 1 for all values of h;. In a sense, this

is a "fourth" solution family, the well known Stokes solution, in that it

can not be obtained from the other solutions, except as a high frequency

limit. Thus Figure (2) has zero period at h' iE equal to 1 with the

Stokes solution indicated as a dashed line. The Stokes solution,.

h - + tan a • x, requires o2 - gk sin a. Thus for any h' n tan a, there

is a single specific frequency, a, at least for the lowest separable mode.

Ursell's extension (1952) to higher modes is not comparable 'here since
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those higher modes were not separable solutions and could not be obtained

by this present approach. 4

A question then arises as to the appropriate solution for an "almost"

linear topography. The examples here, which represent the only separable'

solutions-but clearly not necessarily the only solutions-will only

support very high frequency trapped waves when h' RM is near to 1 but not0 4 ,
equal to 1.

The offshore decay parameter, . depends on both h' a4 %

but in a manner such that 1/R is a function of hl PML/~ s n ~ only. This is,., 0

shown in Figure (3) where Z/.E is given for h . 200 meters and

200 kilometers for various values of h; but valid of course for any

choices of hM and xM. This figure indicates the limited range of

practical solutions since all terms decay like exp(-ZI) or equivalently

ep(.(!/R)W(/)R2). To have this exponential greater than 0.04

compared to a value of i at R 0, (Wf ) < /(9/)( ) 2 o Even for

R /RM up to 0.1 representing the region of measurable wave heights,

31.4/; 2. Realistic choices for are of the order of .40 to

1000 for the continental slope and shelf respectively; these limit,
S/ < 2 x 10 - 2 and 3 x 10 - 5 which in turn imply that hl Nmust be, close -

to either zero or (Zn 10)/0.9 ineither case. Thus for realistic ocean

topographic scales, the energy must be trappe very near shore.,

Figure (4) shows the topography, h, as a function of for

several values of the parameter h based on a choice of hM. *9"1:

to 200 meters and xm  equal to 200 kilometers but aain, valid in. general.

Those topographies for h' RM > I are forced to pass, through (0.9, 09) by

the choice of definition for xM; other choices vculd-simply rescale ,these

curves to pass through (1-6, 1-6), i.e. appear steeper for , < O 1., or,

shallower for 6 > 0.1. As h approaches 1.0 4. the topography appears-

"3



211

almost linear except near R/RM equal to 1. For values of h' R. less

than 1, convex upward topographies are found with an infinite vertical

slope at V/M equal to 1.0. The transition across ho  equal to 0.5

is smooth with no ascertainable peculiarities.

Calculations of velocities and waveheights produced extremely small

values for any offshore distance that itself was not a very small fraction

of xM. For example, with h' - 0.002556, h 200 meters,
0

-a 200 kilometers the velocity and waveheight values had reached 4% of

their maximum values when x reached 0.2% of x., e.g. about 400 meters--

at which distance the water depth was approximately one meter. This implies

that the edge wave was completely trapped in the region where the model is

the poorest representation of the overall topography and is therefore

inadequate. For this reason, no results are shown for this case.

For much smaller values of % however, it is possible to

illustrate the depth dependence for velocities. Figures (5) and (6)" show

results for i - 1.0. The first plots the offshore velocity, 5, as a

function of (../Rm) and Z for h' - 1.01. The second illustrates the
0

different coastline values for V and i as compared to the reference

value of 1 for i, as a function of h' There is a cutoff at
o "a

h'- 0.2854 for R 1.0 below which k becomes imaginary. This corre-

sponds to the requirement that 5 > In(sec A). Similarly near

h' Rm (M 10)/0.9, V behaves like (1 + (ho/c)2) 1 2 , as defined in case I-A,
00

while Q behaves like -h'.

0

. . .. .. + .- - . -+ .
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CONCLUSION

The bulk of observations have been for shallow water-long wavelength

situations such that the question of vertical variation does not enter, as

befits the general emphasis on two dimensional theory for edge waves.

All tsunami observations are of this form as were the observations of Huntley

and Bowen (1973) who found evidence for the lowest mode edge wave of Ball's

(1967) solution corresponding to case I-A here. Ursell (1952) described

experiments on a linear topography but did not give any details of vertical

structure. Thus it appears that separate observations and/or experiments

may be necessary to detect the three dimensionality of those edge waves

described here. Whether such observations are warranted is another question.

Wavelengths that are significant enough to carry appreciable energy
alongshore may also need to be long enough to allow a two dimensional theory

to apply. Such a theory allows for far more general topographies than doesV the three dimensional theory, as discussed in appendix B. This is clearly

a question for further consideration on physical grounds.

Assumirg this research to be physically justiied, there are still

F. several mathematical questions left unanswered. First, are there1- non-separable solutions, analogous to Ursell's (1952) solutions, for these

or related topographies and if so how may they be found? Second, what is

the appropriate three dirensional edge wave solution for an "almost" linear

topography? Is it close to the original Stokes solution or must it be

close to the high frequency limit given here?

SOne extension of this work would,,be towards alongshore virlations in

topography. If the topography varied periodically along the costline

(i.e. in y) the edge waves would be filtered as Floquet waves,

e.g. Brillouin (1953)) and only certain frequencies and wavelength# could

A 
i
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propagate. Alternatively, the effect of a small irregularity in the

otherwise straight coastline could be studied, e.g. as by Fuller and Mysak

(1977).

The extension to lower frequencies such that Coriolis effects become -%

significant does not appear to be appropriate' in cdntext of a three

dimensional theory since these lower frequencies would imply shallowwater-

long wave theory to be a good approximation in the real ocean. Thix then

brings up the question of the applicability of two dimensional theories to

the present examples. Case i-A is essentially shallow water theorybut-

the remaining asymptotic solutions do have some depth variation as dbes the

general solution. Thus two dimensional theories give quite different

results than those given here as seen in appendix B. Even case IT-A,

A which is a low frequency solution, requires very small h' such -that &,tiot

dimensional ilution may apply for R < eventually (for near 5. 4

vertical variation is required.

However over the regions of interest, i.e. where the waves have not

decayed to negligible values, even the asymptotic solutios do not

exhibit appreciable vertical variations for rotalistic vales of-Vh and
0

i since i never got apprqciably different from 1 (the freesurface)*.,

There are clearly values for the input paramAiters where thesievertia*I

variations may be significant, but they do n~ot appear o beo physically

realistic, e.g. xi < 1.

eI
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APPENDIX A

The following computer program accepts a single card IJOB as the

number of joba (input data sets) and then several "Jobs" each with hl,
and x. (in cm) as input. The card IVEL - 0 behind IVEL - 1 will surpass

velocity output while the reverse will provide velocities at

*xi - 0.0 (0.1) 1.0 and I/E - 0.0 (0.2) 1.0. The remaining output is labeled;

the symbol D in front of a variable means the dimensional form (in cgs units).

The symbol HPX is h' R.M, HOP is h', SIGMAO is oo , etc.. Typical running times

for twenty different input cards is about 2.5 seconds on a CDC CYBER 173.

I'
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APPENDIX B: TWO DIMENSIONAL (SHALLOW WATER) WDOE WAVES

Consider the conditions under which a long wavelength free surface

gravity wave may be trapped against a straight coastline by a topography

which varies in a direction normal to the coastline. Taking x in this

normal direction and y along the coastline, the linearized shallow

water-long wavelength equations for a homogeneous fluid on a rotating

earth are [e.g. LeBlond and Mysak (1978)]:

auat + g aWax - fv

(1) av/3t + g an/By -- fu

Wnat + 1i(au/ax + Wvay) + uaHi/3x 0

where (u,v) are velocities, q is the free surface elevation, H is- the

water depth and f is the Coriolis parameter.

Assume solutions which propagate along the coastline, e.g.

u(x,y,t) -U(x) cos (ky - at)

V(x,y~t) - V(x) sin (ky - at)

n(x,y,t) -E(x) sin (ky - at)

The original equations then reduce to

gE'+ GU -fV 0

K(2) -oV +gkE + fu 0

-oE + H(U' + kV) + uH' -0



(2

Clearly U and V may be eliminated, leaving a single equation on

E, e.g. Leblond and Hysak (1978 - p. 220)

S(3) (HE')' + H' Ef0

This equation does not force a particular x dependence on either E or

H, as was the case for the three dinsional equations, since here E and

H are coupled while previously they were uncoupled. Instead there are

many solutions. If for example, E is required to be exponentially

decaying such as Eoexp (-tx) , equation (3) requires H(x) to

be

H(x) gc 2 - 2 ) + H exp %T /

where H is an arbitrary constant d~fined in general either by choosing

0

11(0) * 0 or 1(0) = 0 to have no net mass flux across the.coastline,

x 0 0. If H(0) is chosen to be zero, the topography is given by

"" ~ ~02-f2  { rk2"t2 1, ) ':

HL~kx)~x -_____

F' Certain ranges of parameters give negative topographies which must be

excluded. Requiring that L. > 0, but recognizing that k may be either

positive or negative yields the following results:

For a > f, k > I. gives a positive concave upwards topography4

exponentially approaching a uniform depth, H equal to : 2-f2 )/g(k 2- 2-) ;

- < k < t gives a positive, coaVex upwards, exponentially increasing



I
depth, -oa/f < k < -1 gives a positive, concave upwards

topography again exponentially asymptotic to 11. and finally k < -Gt/£

yields a negative topography.

For o < f, k > L and -qX/f < k < L both yield

negative topographies, but -. < k < -oa/f yields a positive,

concave ipwards topography again decaying exponentially to the asymptotic

depth H., while k < -L yields a positive, convex upwards

exponentially increasing depth.

The choice of U(O) equal to zero requires either e = -fk/.

leading to a constant depth, 11 - f 2 /g9 2  , or-the trivial solution,

E(O) equal to gero and thus E(x) equal to zero everywhere. This choice is

then rejected for this particular form for E(x).

In general, equation (3) may be considered to define E- for a given

H or alternatively It for a given E. While the first view is more

realistic physically,'the second is simpler iathemaically, i.e.

-E fk E}it, + {Ell k2E} H {so ..a Z

may be solved completely for H(x) for a given E.

" Z' ' #(x)-kzE(x):

H(x) _C exp d'

". • + (f2-0;1 r- E"-(x)-k2E(X) d ";

x) - ,(x)-k2E(X) ,X

* - -A/

~Eex dx
E'~ ~ (x)- Ex l)- E(x)

I,. " L j ... . . .. :



V I
where C is an arbitrary constant to be chosen to have zero net mass

0

flux across x - 0.

Although this format may seem inappropriate on physical grounds, it

represents a "transformation" of E(x) into H(x), i.e. trial functions

for E lead directly to a functional form for H and in a sense to the two

dimensional counterpart to the three dimensional case studied in the main

text, The alternative view of specifying H and solving for E leads to

a second order differential equation on E with variable coefficients some

F of which vanish when H is zero, i.e. represent singular solution points.

A number of solutions in this format have been generated, e.g. Ball (1967)

obtained a solution in terms of hypergeometric polynomials for an

exponential depth variation of the form H° (-exp(-ax)). Hidaka (1976-b)

obtained a solution in terms of modified Mathieu functions for a parabolic

depth variation of the form H (1 + (x2 /a 2 )) 1/ 2, Robinson (1964) used a
0

finite width, linear shelf terminating at a discontinuity to a constant

depth ocean with solutions in terms of Laguerre functions, Eckart (1951),

Mysak (1968) have obtained solutions in terms of Kummer functions or Laguerre

polynomials for a linear topography, H(x) a yx, and Shaw (1977) has obtained

solutions in terms of (both) Kummer functions for the case of a linear

topography which did not necessarily break the surface, H(x) a H + Yx.
0

Other solutions could be generated for other topographies uing the standard

functions of mathematical physics, e.g. Batean (1954).

In a sense, however, these solutions are all the Ame-type;

series solutions, using the method of Frobenius, to the original differential

-quations with the singular solution (if any) at thek.origin surpressed, if

necessary.

1
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